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Cosmic Microwave Background Anisotropies

Planck all sky map • CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5
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Planck Collaboration, 2013, paper XV

Huge compression of 
information to a few 
hundred numbers!



e.g. Komatsu et al., 2011, ApJ, arXiv:1001.4538
  Dunkley et al., 2011, ApJ, arXiv:1009.0866

1˚ ⇔  l ~ 200

Precision cosmology Tiny error bars!

WMAP at L2

Pie-chart of the Universe
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 CMB anisotropies clearly taught us a lot about 
the Universe we live in!



e.g. Komatsu et al., 2011, ApJ, arXiv:1001.4538
  Dunkley et al., 2011, ApJ, arXiv:1009.0866
  Keisler et al., 2011, ApJ, arXiv:1105.3182

Constrain inflationary models

thermal/ kinetic SZ effect

ACT

SPT

 CMB anisotropies clearly taught us a lot about 
the Universe we live in!
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CMB anisotropies as probe of Inflation

Text

Planck Collaboration, 2013, paper XVI

Planck Collaboration: Cosmological parameters
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Fig. 22. The Planck power spectrum of Fig. 10 plotted as `2D`
against multipole, compared to the best-fit base ⇤CDM model
with ns = 0.96 (red dashed line). The best-fit base ⇤CDM model
with ns constrained to unity is shown by the blue line.

Our extensive grid of models allows us to investigate cor-
relations of the spectral index with a number of cosmological
parameters beyond those of the base ⇤CDM model (see Figs.
21 and 24). As expected, ns is uncorrelated with parameters de-
scribing late-time physics, including the neutrino mass, geom-
etry, and the equation of state of dark energy. The remaining
correlations are with parameters that a↵ect the evolution of the
early Universe, including the number of relativistic species, or
the helium fraction. This is illustrated in Fig. 24: modifying the
standard model by increasing the number of neutrinos species,
or the helium fraction, has the e↵ect of damping the small-scale
power spectrum. This can be partially compensated by an in-
crease in the spectral index. However, an increase in the neu-
trino species must be accompanied by an increased matter den-
sity to maintain the peak positions. A measurement of the matter
density from the BAO measurements helps to break this degen-
eracy. This is clearly seen in the upper panel of Fig. 24, which
shows the improvement in the constraints when BAO measure-
ments are added to the Planck+WP+highL likelihood. With the
addition of BAO measurements we find more than a 3� devi-
ation from ns = 1 even in this extended model, with a best-fit
value of ns = 0.969 ± 0.010 for varying relativistic species. As
discussed in Sect. 6.3, we see no evidence from the Planck data
for non-standard neutrino physics.

The simplest single-field inflationary models predict that the
running of the spectral index should be of second order in infla-
tionary slow-roll parameters and therefore small [dns/d ln k ⇠
(ns � 1)2], typically about an order of magnitude below the
sensitivity limit of Planck (see e.g., Kosowsky & Turner 1995;
Baumann et al. 2009). Nevertheless, it is easy to construct in-
flationary models that have a larger scale dependence (e.g., by
adjusting the third derivative of the inflaton potential) and so it
is instructive to use the Planck data to constrain dns/d ln k. A
test for dns/d ln k is of particularly interest given the results from
previous CMB experiments.

Early results from WMAP suggested a preference for a nega-
tive running at the 1–2� level. In the final 9-year WMAP analy-
sis no significant running was seen using WMAP data alone, with
dns/d ln k = �0.019 ± 0.025 (68% confidence; Hinshaw et al.
2012. Combining WMAP data with the first data releases from
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Fig. 23. Upper: Posterior distribution for ns for the base ⇤CDM
model (black) compared to the posterior when a tensor compo-
nent and running scalar spectral index are added to the model
(red) Middle: Constraints (68% and 95%) in the ns–dns/d ln k
plane for ⇤CDM models with running (blue) and additionally
with tensors (red). Lower: Constraints (68% and 95%) on ns and
the tensor-to-scalar ratio r0.002 for ⇤CDM models with tensors
(blue) and additionally with running of the spectral index (red).
The dotted line show the expected relation between r and ns for
a V(�) / �2 inflationary potential (Eqs. 66a and 66b); here N is
the number of inflationary e-foldings as defined in the text. The
dotted line should be compared to the blue contours, since this
model predicts negligible running. All of these results use the
Planck+WP+highL data combination.
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• Big goal/hope: detection of B-polarization

• Plenty of progress over the next few years: 
 ground/balloon: SPTpol, ACTpol, Spider, ...
 space: Planck, LiteBIRD, PIXIE, COrE, ...?



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Only very small distortions of CMB spectrum are still allowed!

Average spectrum
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Why should one expect some spectral distortion?

Full thermodynamic equilibrium (certainly valid at very high redshift)

• CMB has a blackbody spectrum at every time (not affected by expansion)

• Photon number density and energy density determined by temperature Tγ

• Tγ  ~ 2.725 (1+z) K

•  Nγ ~ 411 cm-3 (1+z)3 ~ 2×109 Nb

• ργ  ~ 5.1×10-7 mec² cm-3 (1+z)4 ~ ρb x (1+z) / 925
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Perturbing full equilibrium by 

• Energy injection  (interaction matter  photons)
• Production of energetic photons and/or particles (i.e. change of entropy)

 CMB spectrum deviates from a pure blackbody
 thermalization process (partially) erases distortions            

(Compton scattering, double Compton and Bremsstrahlung in the expanding Universe)
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Measurements of CMB spectrum place tight constraints 
on the thermal history of our Universe!



What does the distortion look like?
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Response function: 
energy injection ⇒ distortion

Intensity signal for different heating redshifts
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Response function: 
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Intensity signal for different heating redshifts

Response function: 
energy injection ⇒ distortion
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high-z S
Z effect
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Intensity signal for different heating redshifts

Response function: 
energy injection ⇒ distortion
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Intermediate distortions 
probe time-dependence of 
energy release history
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     CMB distortions probe the 
thermal history of the 
Universe at z < few x 106

pre- post-recombination epoch

D
is
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ry
sp
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Physical mechanisms that lead to release of energy

• Cooling by adiabatically expanding ordinary matter: Tγ ~ (1+z) ↔ Tm ~ (1+z)²                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• continuous cooling of photons until redshift z ~ 150 via Compton scattering
• due to huge heat capacity of photon field distortion very small  ( Δρ/ρ ~ 10-10-10-9 )

• Heating by decaying or annihilating relic particles
• How is energy transferred to the medium?
• lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), ... 

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)

• rather fast, quasi-instantaneous energy release

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)

• Cosmological recombination
•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cosmic Rays, etc) 

„high“ redshifts

„low“   redshifts
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Average CMB spectral distortions
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y-distortion ~ 10 -7 - 10-6
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Signal detectable with very 
high significance using 
present day technology!



Average CMB spectral distortions
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lifetime tX ~ 114 yrs
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Average CMB spectral distortions
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Spectral distortions provide 
probe of particle physics!

Signature of Particles with 
different lifetimes can be 
distinguished!

Example:
lifetime tX ~ 114 yrs
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Dissipation of small-scale acoustic modes
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Dissipation of small-scale acoustic modes

Keisler et al., 2011, ApJ

Damping Tail

nS = 0.9663 ± 0.0112

TestTest
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Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!
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Dissipation of small-scale acoustic modes
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Signal for extrapolated power 
spectrum marginally 
detectable with a PIXIE-type 
experiment!



Power spectrum constraints

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improving limits at smaller scales would constrain inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

Jens Chluba - Astrophysics Roadmap Town Hall Meeting Page 13



Power spectrum constraints

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improving limits at smaller scales would constrain inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions could allow extending our lever arm to k ~ 104 Mpc-1

• See JC, Erickcek & Ben-Dayan, 2012 for constraints on more general P(k)
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many models with excess 
small-scale power can be ruled 
out already with a PIXIE-type 
experiment!
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Another way to do CMB-based cosmology!

Direct probe of recombination physics!
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Factor of ~ 10 needed to 
detect recombination lines!



The 30 year Roadmap
5-10 years from now (PIXIE-type experiment):
• average y-distortion from reionization with sub 1% precision

• Tight constraints on decaying particles with lifetimes tX ~ 108 - 1011 sec

• Tight constraints on inflation models that produce excess small-scale power
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10 x PIXIE’s sensitivity  



The 30 year Roadmap
5-10 years from now (PIXIE-type experiment):
• average y-distortion from reionization with sub 1% precision

• Tight constraints on decaying particles with lifetimes tX ~ 108 - 1011 sec

• Tight constraints on inflation models that produce excess small-scale power

10-20 years from now (~10-20 times PIXIE sensitivity):
• spatially varying y-distortion from WHIM

• even tighter constraints on decaying particles

• significant detection of signal from Silk-damping even in standard case

• first detection of recombination signal

Combination with very high 
sensitivity B-polarization 
experiment to probe both 
large and small-scale CMB 

Jens Chluba - Astrophysics Roadmap Town Hall Meeting Page 17



10 30 60 100 300 600 1000
ν [GHz]

10-28

10-27

10-26

10-25

10-24

10-23
Δ
I ν

 [ 
W

 m
-2

 s-1
 H

z-1
 sr

-1
 ]

Reionization

Decaying particle

Silk damping (standard)

Recombination lines

Monopole distortion signals

Silk damping (step)

Average CMB spectral distortions

PIXIE’s sensitivity  

negative branch: ‘thin’

A
bs

ol
ut

e 
va

lu
e 

of
 In

te
ns

ity
 s

ig
na

l positive branch: ‘heavy’

Jens Chluba - Astrophysics Roadmap Town Hall Meeting Page 16

10 x PIXIE’s sensitivity  

~ 200 x PIXIE’s sensitivity  



The 30 year Roadmap
5-10 years from now (PIXIE-type experiment):
• average y-distortion from reionization with sub 1% precision

• Tight constraints on decaying particles with lifetimes tX ~ 108 - 1011 sec

• Tight constraints on inflation models that produce excess small-scale power

10-20 years from now (~10-20 times PIXIE sensitivity):
• spatially varying y-distortion from WHIM

• even tighter constraints on decaying particles

• significant detection of signal from Silk-damping even in standard case

• first detection of recombination signal

Combination with very high 
sensitivity B-polarization 
experiment to probe both 
large and small-scale CMB 

30 years from now (~ 200 times PIXIE sensitivity):
• cosmology based on recombination lines (pre-stellar helium abundance!)

• direct test of recombination physics (interpretation of Neff > 3.046)

• very sensitive measurement of the primordial power spectrum to k~104 Mpc-1
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Conclusions

• CMB spectral distortions open a new window to the 
early Universe and inflationary epoch

• complementary and independent source of 
information about our Universe not just confirmation

• simplicity of thermalization physics allows making 
very precise predictions for the distortions caused 
by different heating mechanisms

• in standard cosmology several processes lead to 
early energy release at a level that will be 
detectable in the future

• extremely interesting future for CMB                  
based science!




